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J. Phys: Condens. Matter 4 (1992) 3533-3550. Printed in the UK 

Crystallinity, exchange-correlation and isotope effects on the 
plasmon excitations in high-T, superconductors 

Danhong Huangt, Chao Zhangt: and Godfrey Gumbsts 
t DepMment of Physics, University of Lethbridge, Lethbridge, A l b  TlK 3M4, Canada 

8 Depanmenl ol Physics and Astronomy, Hunter College of the City Universily of New 
York, 695 Park Avenue, New York, NY 10021, U&4 

?RIUhW 4004 Wesbmok MaU. knwuver, B.C. V6T 2A3, Canada 

AbslraeL With the use of a tight-binding model we have studied the eEecfr due to 
qs l a l l i n i ty ,  i.e. the atomic structure, of the Cu-02 planes and Q-0 chain planes of 
the high-?; supereonducton on the inmlayer and interlayer Coulomb interadions as 
well as the densily-densily response function, This effefect is found to be appreciable 
since each electron is well localized around the mpper site and the sue of the unit cell 
k wmparable with the lattice mnslant. Localization leads to poor mnductivity m the 
normal gate and is determined by the hopping behveen adjacent wpper sites caused by 
the overlap of electron wavefunctions with electrons on the q g e n  site. The dominant 
local achange+"elation contribution is included in the local-field approximation. By 
laking acmunt of the plasmon-optical phonon wupling in our calculations, we have 
demonstrated the horope effecl for acoustical plasmonmediated pairing as well as the 
effect on the eiiettive intralayer Coulomb interaction which is believed la be impoliant 
for the formation of Cooper pairs m lhe 0 1 - 0 2  plana. me effects due U, the position 
of the chain planes and the number of planes in each unit oell on the plasmon adtation 
energies as well as the effective intralayer Coulomb interaction are also studied. The 
relationship between these effects and the aitical temperature T, is discussed. 

1. Introduction 

The recent discovery of high-Tc superconductors has stimulated a remarkable surge 
of interest and extensive discussions on the mechanisms responsible for superconduc- 
tivity [11]. In view of the reduced or negligible isotope effect [SI in layered high-"= 
superconductors and the fact that phonons are not likely to amount for transition 
temperatures in excess of 40-50 K, we are now searching for other types of mech- 
anisms which might be responsible. Included among the alternative mechanisms is 
the role played by acoustical plasmons I6-81. Several experiments have demonstrated 
that the conductivity is isotropic within the plane and is greatly reduced in the direc- 
tion perpendicular to the planes. This implies that the layered two-dimensional (20) 
electron gas (EG) planes are most likely to be responsible for the superconductivity 
of these materials. The common feature of these materials is the layered 2D planar 
structure in which the planes are coupled to each other by the interlayer Coulomb 
interaction. This gives rise to a singular behaviour for the plasmon density of states 
at the Brillouin zone boundaries [7l, which in turn leads to a noticeable contribution 
to the acoustical plasmon-mediated pairings. 

Most of the theoretical work that has been carried out so far on this problem has 
been restricted to models consisting of a superlattice of homogeneous 2D EG layers 
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[&lo]. In this paper, we include the effect due to crystallinity and we discuss the 
main difference and physical consequences which this inclusion has on the collective 
modes of high-temperature superconductors. There are several features in our results 
which are due to the inclusion of the crystalline structure in our model. (ll~ define the 
notation, we show the structure of YBa,Cu,O, in figure 1.) For example, the inclu- 
sion of crystallinity produces a local minimum in the excitation energy at the Brillouin 
zone boundary due to the competition between the increase in polarization and the 
decrease in the Coulomb interaction. This causes the plasmon cut-off frequency to be 
shifted downwards. Within the tight-binding model, this causes the excitation energy 
to depend on the position of the chain planes. Both the single-particle and plasmon 
excitation energies are periodic in the wavevector components q+ and q, with period 
27r/a, where a is the period shown in figure 1. Also, since the conductivity is poor 
in the normal state of these materials and the size of the unit cell is comparable 
with the lattice constant, we believe that the crystalline structure produces important 
modifications of the intralayer and interlayer Coulomb interactions as well as the 
density-density response function. 

0 c-p, *,om - x  

o wYnb YBr,Cu,O, a u m u r r  

F@n L Schematic representation of the erystal stmclure 01 YBa2CusOi. The CU-02  
plane and Cu-0 chain plane are indicated. The oxygen atoms qZ), O(3) and O(4) give 
rise la hopping between adjacent copper siler. Here, d; = d? = dt and lhe length of 
the unit cell along lhe z-axis is d = 2dt  + da. d : ,  ( d : )  are the separations between 
lhe chain plane and lhe adjacent upper (lower) plane. me CU-0 chain b parallel U, 
lhe y-axis and the C u - 0 ~  plane is in the z-y plane, with Mice conslanls a, b in the 
2- and ydireclions, nespectively. 

From bandstructure calculations, we know that the active electrons are well 
localized around the copper sites. The presence of oxygen atoms produces an in- 
direct hopping of the electrons between adjacent copper sites as a result of the 
overlap of the electron wavefunctions with electrons on the oxygen sites. This implies 
a poor hopping conductivity within a plane in the normal state. This is also the case 
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for the chains in figure 1. At half-filling, the undoped materials are Mott insulators. 
After doping with holes, the lowest electron energy band is no longer completely 
filed. The intraband transition for electrons is then allowed. We only consider the 
dynamics of the electrons. Hole doping is included to account for the incompletely 
filed lowest energy hand. Since we are only interested in charge density oscillations, 
we shall neglect the spin-spin Heisenberg exchange hiteraction. When the corre- 
lations are strong, the Vndom phase approximation (WA) is not suitable, In this 
limit, we must include effects due to local exchange and correlations which modify 
the short-ranged part of the intralayer Coulomb interaction. The role played by the 
chain planes is to increase the coupling between pairs of unit cells. This also leads 
to an anisotropic sound velocity of acoustical plasmons within a plane. Contrary to 
expectation, the chain excitations do not increase the weight of acoustical plasmons in 
the density of states as a result of the large effective mas and the Landau damping of 
singleparticle excitations within a plane. When we assume that the pairing is due to 
acoustical plasmon-mediated pairing, we show that there exists a weak isotope effect, 
in the sense that the mass of an oxygen ion includes contributions to the shifts to the 
optical phonon frequency and plasmon cut-off frequenq when the coupling between 
plasmons and phonons is included. The aim of our paper is to generalize the well- 
known homogeneous EG model for plasmon excitations in high-T, superconductors to 
include the inhomogeneity of the electronic structure within the planes. We simulate 
the layered inhomogeneous EG by a planar array of quantum dots. We include the 
tunnelling between adjacent dots in both the z- and ydirections within a plane as 
the model for the Cu-0, plane. As a model for the CU-0 chain plane, we include 
tunnelling only along the ydirection (the chain direction). 

For simplicity, we choose the single-particle confining potential of the copper 
atoms within a plane and on a chain to be of parabolic form 

where mi(,) is the effective mass of an electron in the plane (chain), and Up(c) are the 
strengths of the confining potential for the plane (chain). The oxygen atoms 0(2), 
O(3) and O(4) also produce indirect hopping between adjacent copper sites with 
intensity t ,  = t ,  = t ,  within a plane and 1, = t ,  along a chain. The bandwidths are 
W, = 4tp (W, = 4t,) in the plane (and on a chain). The thickness of the (3-0, 
planes and the Cu-0 chain planes is taken to be L,.  The width of the chain is much 
smaller than the lattice constant. 

This paper is arranged as follows. In section 2, we present our model which 
takes account of the crystalline structure of high-Tc superconductors, local exchange- 
correlation effects as well as plasmon-phonon coupling. In section 3, we present 
numerical results and a discussion. In section 4, we discuss the connection between 
our results and high-Tc superconductivity. 

2. Model and general formalism 

In the tight-binding approximation, the first-order single-particle energy eigenmlues 
and eigenfunctions have been calculated for a single layer of multiple chains as [ll] 

E&) (k ) = E$) + - wc (1 - c o s  (k,u)) 
‘I Y 2 
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where W, is the bandwidth for tunnelling motion in the ydirection parallel to the 
chains. Here, n, m = 0 ,  fl, f2,. . . are the indices along the x-  and yduections, 
and i , j  = 0 ,  1,2,. . . are the level indices for the lateral quantization. N,,  N ,  are 
normalization factors for the periodic boundary conditions imposed. Here, the first 
summation over m in (2) is for the Bloch wavefunction of a single chain, and the 
second summation over n is for the array of chains. q( z )  is a variational wavefunction 
Ill], representing the conhement in the zduection, and is given by 

for z < 0 

where L, is the thickness of the layer. In our model, the tdependent part of the 
wavefunction in (3) is included to account for the small correction to the screening 
given by (19) due to the finite thickness L ,  of the layer. We may also use the 
wavefunction for a quare-well model with infinite potential barriers to simulate the 
boundaries. However, for the case considered here, i.e. q,,L, < 1 (thin Nm limit), 
the different forms of model wavefunctions only give very small differences in the 
screening factor f(qzyL,) in (19) which is approximately equal to one in the thin 
Nm Limit. Since the zdependent part of the wavefunction decays very rapidly with 
distance from the centre of plane due to the very narrow region of confinement, 
the variation of f(qzvLz) from a value of unity is quite small. The wavefunction 
in (3) has been chosen to simplify the mathematical details of our calculations. The 
wavefunctions E i (  2-na) and rj (y-ma) depend on the model confining potentials in 
the I- and ydirections. When the single-particle harmonic confining potential model 
is used, & ( z -  n u )  and -y,(y-ma) are the usual harmonic oscillator wavefunctions. 

For a single-layer of planar 2~ ui, the electronic wavefunctions are still given by 
(2) to fist order. The corresponding single-particle energy eigenvalues are [Il l  

W w 
E$')(k,,k,,) = E ~ ~ ) + ~ ( 1 - c o s ( k , a ) ) + ~ ( 1 - c o ~ ( k , , a ) )  2 2 (4) 

where LVp is the bandwidth due to nearest-neighbour hopping. For both the chain 
and plane, we have assumed that the electrons are always in the lowest eigenstate as 
a result of the very strong confinement in the zdirection. Also, we have neglected 
the very small anisotrom in the lattice constants along the x-  and yduections, and 
denoted their average value by a. Since only the h e s t  electronic states are occupied 
and since we are only interested in the low-energy intraband excitations, we can set 
i = j = 0 in equations (1) and (4). In the weak tunnelling limit, the irreducible 
polarizabilities of the chain and plane have been calculated and the results for the 
real parts are [ll] 
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where ii, and nlD are the areal and linear electron densities in the plane and chain, 
respectively. kyF and k ,  are the Fermi wavevectors of the chain and plane and are 
given by 

'yF = nnlD (7) 

(8) k, = x ( i i s )  1 1 ' .  

We are only interested in the regime where there is no Landau damping, Le. when 
q < 2k$& Here, kcd is the Fermi wavevector for the chains. Also, in this region, 
we have w > q. Therefore, we use the long-wavelength approximation for the 
susceptibility in equations (5) and (6), and neglect the instabilities that are produced 
at q = Zk$d where the modes are Landau damped. The imaginary parts of the 
polarizabilities account for Landau damping in the region wmin < w < wmzx. For 
the chain, we have 

and 

where the threshold wavevector and the Fermi energy are 

w, - 2 c y  

2 
q, = - tan-  

a 
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where the threshold wavevector and the Rrmi energy are 

z Jm 
qp = ?sin-' a [ wp ] 

When qg = 0, we a n  replace q, in equations (13) and (14) by 4.. In equations 
(9)-(11), we have assumed that W, 2 2$) and Wp 2 Ze(,) which are satisfied 
when nlDa < 4 and %*a2 < f. We note that the bandwidth is proportional to the 
reciprocal of the effective mass and for simplicity we take UJtc  = Up/tp., As a 
result, we have m:U, = m;Up = m*U. For these assumptions, both the cham and 
the plane have the Same form of intralayer Coulomb interaction [ll] 

Here, G = ZT/R b a reciprocal lattice vector. The interlayer Coulomb interaction 
can be. calculated in a similar way with the result 

where s is the separation between adjacent layers. In equations (17) and (20), the 
medium surrounding the system has dielectric constant E,  = 4ne0e,. 

We include effects due to exchange and correlation in the local-field approximation 
[9]. The renormalized polarizability is given by 

where the local-field correction is accounted for by the factor 

and G(c) (q , ,q , )  is obtained by replacing k, by k,, in (22) 191. The local-field 
correction in (22) has the same form as in [9]. It includes a correction to the RPA 
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due m the short-range part of the electmn-electron interaction. Furthermore, we 
incorporate the plasmon-phonon coupling into our formalism through 

det g(q , ,q , ;w)=  

where E- and est are the optical and static background dielectric constants of the 
material and &, are the optical phonon frequencies of the plane and chain, 
respectively. 

We note that there is an exponentially decaying factor in the interlayer Coulomb 
interaction in (20). 'Ib simplify the calculation, we use the tight-binding model [lo] 
to calculate the excitation energy. In this approximation, the excitation energy is a 
solution of the secular equation 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

... E A B 0 ... 0 0 ,.. 

... 0 B A E . . .  0 0 . . .  
I . .  0 0 D C D 0 0 . . .  
... 0 0 0 E A B 0 . . .  = O  
... 0 0 0 0 B A  E . . .  
. . .  O O O O O D C D  
. . .  0 0 0 0  0 O E A  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  

(3) D(~;)=-X,E (Q (qz,qy;w)D1 (q,,q,;d;) 

E ( d : ( ) =  -Z!$(qz7qy;w)D1 (q,,q,;d:() (29) 

and d; ,  (d; ')  are the separations between the chain plane and the adjacent upper 
(lower) plane. The length of the unit cell along the tdirection is d = ( d ,  + d; + dy) .  
As discussed in [lo], the areal and linear electron densities are related to the three- 
dimensional (3D) electron density through 

fiLS = n Z D d ,  

RID = n S D a  (d', + d;' - d,) . 
From a dynamical point of view, the structure must be 3D. Othewise, thermal 

fluctuations will destroy any long-range order in the thermodynamic limit. Electri- 
cally, the system can be regarded as 2D due to the appreciable anisotropy in the 
conductivity. As in the layered homogeneous 2D EG model previously discussed in 
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the literature [S, 91, we have neglected the wvefunction overlap along the direction 
perpendicular to the plane (one order smaller than within the plane). It is known that 
this wvefunction overlap only leads to a negligible gap (much smaller that kBT) in 
the excitation spectrum as well as a very small modification to the screening. In prin- 
ciple, if a plasmon-mediated mechanism is assumed, we could calculate the transition 
temperature T, from the gap quation. The effective intralayer Coulomb interaction 
plays a dominant role in this equation. In conventional Bardeen-Cooper-Schrieffer 
(BCS) theory, it is the pair potential that is included. Here, the effective intralayer 
Coulomb interaction can be calculated as follows. A simptilying assumption is to take 
a unit cell that contains one Cu-0, layer and one Cu-0 chain layer. For this, we 
obtain 

where the interlayer coupling potential v(q) is given by 

1 1 

and 

where d‘, is the separation between the chain plane and the adjacent upper plane. In 
comparison, the effective potential for a layered ZD EG is 

‘p(c)(P;w) = 1 - vp(c)(4xP*(c)(q~ 1 w )  (37) 

By computing the ratio of (32) to (38) we could determine the effect due to 
aystallinity, exchange and correlation as well as plasmon-phonon coupling on the 
effective intralayer Coulomb interaction. 
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3. Numerical results 

We take the following material parameters from [lo] and use them in our calculations: 

?aQD = 4.0 x loz1 em-' a = 3.85 8, 

d ,  = 4.13 8, 

mz = 6.20 me mc = 1.43 me 

d2 = 3.42 8, L, = 2aL = 0.68 8, 

E ,  = E- = 4.0 Est = 12.0. 

The bandwidths Wp and W, have not played a role in previous theories. We take 
W, = 1 .O eV for which we have e$) = 0.42 eV which compares well with the value 
used in [IO]. Since WJWP % m;/m: we obtain W, = 0.23 eV. For the qsantum 
dot model, the strength of the confining potential U for each dot and the tunnelling 
intensity t between adjacent dots are two parameters in our model. In our numerical 
calculations, we took t to be the hopping parameter in the Hubbard model. We note 
that if we assume a parabolic confining potential, the magnitude of the gap behveen 
the lowest and the first excited levels is a measure of the strength of the confining 
potential. Also, in our calculations, we have chosen the value for U to be the Same 
as the Hubbard interaction parameter. However, we emphasize that our work is not 
related to the Hubbard model. We have simply used the values of the parameters 
in the Hubbard model to cany out the numerical calculations in our paper. Our 
calculations show that our results are sensitive only to the bandwidth W but not 
U. The calculation [12] of normal state properties has shown that the best fitting to 
experimental data could be obtained when U/W = 3. We make use of this result 
and obtain Up = 3.0 eV and Uc = 0.69 e\! Also, from experiment [13], we get for 
O16 

t-p-j = 48.34 mev Lfi = 62.70 meV 

and for 0,, we have 

t-pJ = 45.97 meV = 59.83 meV. 

Making use of these results in equations (30), (31), (7) and (9, our calculations show 
that 

R, = 1.37 x 1014 

kFa = 0.45 7r. 

nlD = 0.75 x 10' cm-' kYFa = 0.29 n 

In our numerical calculations, we fixed the total number of layers (including the 
chain planes) to be eight. Fbr this case, the dispersion relation in (24) becomes 

(A2 - B2) { (A2 - €3')' Cz - 4 (A2 - B2)  ACDE+4A2D2E2 - B 2 D 2 E 2 }  = 0. 

(39) 
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0.00 
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qY0 

&ore Z I h e  plasmon energy dispersion for qI = 0, with the phonon wupling set 
equal to zero. The upper (lower) broken NNU represent h w k l X  (hwib ) .  li~c upper 
(lower) chain ewes are for F&ix (h&!,> The upper WO branches are coupled plane 
modes and the lowest m e  is the mupled chain mode. 

1.00 ~~~ ~ ~ 

,/,” 

- 5 5 a 0 . 7 5 ~ ~  0.50 

i 
i 

0.25 _ _ _ _  ...........__, _, 

.I 
’ _/ ! _..... &. ... . . . , . , , ..._._” .__ ..’ 0.00 ” 

0 1 2 3 
q.0 

Figure 3. The plasmon energy dispersions tor qv = 0 and zero phonon wupling. The 
notation used in this figure is the same as that in figure 2 Only the mupled plane 
modes have finite frequenq, 

Figure 2 shows a plot of the plasmon dispersion relation when g, t 0 and there 
is no phonon coupling included. Since W, Q W, and k,, < leF, the region where 
there is Landau damping for the chain is completely contained within €he Landau 
damping region for the plane. As a result of the Pauli exclusion principle, we have 

+ 0 when the magnitude of the wavevector satisfies q < 9,. The coupling 
between layers withiin a unit cell gives rise to the triple splitting of the spectrum 
whereas the coupling between the unit cells causes each of these modes, except for 
the lowest one, to split into three branches. The lowest branch does not split into 
three branches since there are only two unit cells for the chain planes. The presence 
of chain planes is responsible for the coupling between the unit cells, leading to 
the large splitting for the branch in the middle. The highest branch has one local 
minimum and one maximum at the Brillouin zone boundary and near the centre of 
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the Bdlouin zone, respectively. When Q~.Q > 2, the plasmon modes are localized 
within one unit cell, causing almost no splitting in this region. The middle branch is 
the most extended one. When q,a is small, the coupled chain mode (i.e. the lowest 
branch) is suppressed due to the narrow bandwidth (or strong localization). Also, 
since W, > W,, the coupled chain mode is completely Landau damped. The local 
minimum shifts the plasmon cut-off frequency downward. This effect is not present 
in a layered homogeneous ZD EG model. If Wp is large, then almost all the plasmon 
modes will be Landau damped. When Wp iC fixed, since the single-particle excitation 
energy is proportional to Wp, the plasmon energy increases with band [illmg to 
reach a maximum at half-fillmg of the band, Le. when kFa  = kYFa = 7r/2. The 
calculated maximum plasmon energy is comparable with the observed values in [14]. 
Our numerical results in figure 2 show that the effect due to the atomic structure can 
be appreciable when qya > 0.4. 

0.0 
0 1 2 

q.0 

FIgum 4 The plasmon energy dispersions for qya = 1.0 and zero phonon coupling. 
me upper hvo branches are coupled plane modes, and the lowest one b the coupled 
chain mode which U suppressed when q=a > 1.75. 

In figure 3, we have plotted the plasmon energy dispersion for q, = 0 in the 
absence of phonon coupling. Since there are no chain excitations when Q~ = 0, the 
coupling between pairs of unit cells is effectively turned off. For this reason, we 
only get the coupled plane modes which is obtained by solving A* - B2 = 0. The 
uiple-splittings arising from the coupling between pairs of unit cells and within a unit 
cell are set equal to zero. Comparing figure 2 with figure 3, we can see quite clearly 
the anisotropic dispersion along the q, and q, directions, which could be attributed 
to the inclusion of chain planes in our model calculations. Moreover, from equations 
(S), (lo), (13), (14) and (24), it is not diacult to prove that both the single-particle 
excitations and the plasmon excitations are periodic along the q, and qy directions 
with the period of the reciprocal lattice vector G = 2rr/a.  Contrary to speculation, 
the chain planes do not increase the weight of acoustical plasmons in the density of 
states due to the Landau damping from the single-particle excitations in the planes. 

Ignoring the phonon coupling, the plasmon energy dispersion for Q,U = 1.0 is 
plotted in figure 4. Here, the chains are excited. However, when Q,U is large the 
interlayer Coulomb interaction is greatly reduced. This leads to the suppression of 
the coupled chain modes when q,a > 1.75. Comparing figure 4 with figure 2, we 
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see that the localization produced by interlayer Coulomb interactions is even stronger 
when dispersion is along the q, direction. This also demonstrates that the dispersion 
6 anisotropic in the presence of chain planes. .& a result of the periodicity of the 
lattice, the large splitting between the modes produced by the coupling within the 
same unit cell can still be maintained at the Brillouin zone boundaries even though 
the coupling between unit cells has become almost zero. In a straightfonvard way, we 
see from (39) that the crystalline structure maintains the dependence of the position 
of the chain planes on the plasmon energy. When the crystallinity is neglected, i.e. 
n = m = 0 the plasmon excitation energy does not depend on the position of 
the chains because all the terms involvimg the product DE in (39) only depend on 
2d, = d; + dy in this case. 

lb get an overview of the principal features of the plasmon excitation spectrum, 
we have plotted the highest branch in 3~ in figure 5; the phonon coupling b included 
in these calculations. We dearly see the four local minima located at the four 
boundaries of the region in figure 5. Also, the four maxima are situated along the 
two diagonal lines near the four corners. The region near the centre is quite flat. 
Furthermore, near the four corners the energy is reduced for a plasmon which is 
excited along the two diagonal lines. 

r - r ~  a. ,wnrr.wmensional plot of the plasmon aCiLalion energy specmm for Le 
highest branch when lhe 01s phonon mupling is included. There are four local minima 
on Le four boundaries. Four maxima near the mrnem are loeted  along the hvo diagonal 
lines. Ihe centre of the displayed region is quite Rat. lo Le Vicinity oC lhe four comers, 
the energy b lower when plasmons are etcited along with WaVevnfom along the WO 
diagonal lines. 

In figure 6, we show a plot of the dispersion relation for all the branches of 
plasmon excitation for qs = 0 when the O,, phonon coupling is included. The small 
optical phonon energies for both the planes and the chains produce the anticrossing 
in the Vicinity of the origin. There are two groups of plasmons due to the splitting 
produced by the plasmon-phonon coupling. The group with the higher energy are 
plasmon-like while the lower group are the optical phonon-like modes. ' b e  coupling 
to plasmons leads to weak dispersions for these phonon-like modes. Comparing these 

.~~ ~~~~~~-~~ -~ 
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0.50 

2, 
Y 
3 

0.25 

I 

0.00 
0.0 0.5 1.0 1.5 

a a  
pisum 6. ?he plasmon energy dispersion relation for q= = 0 when the Ole phonon 
mupling is included. ?he Lhain uuve r r p m l s  hk;. as in figure Z ?he antinossing 
near the origin is due to plasmon-phonon mupling. 

I 
0.372 1 

0.369 t/ 

0.368 ‘ I ,  

0.74 0.75 0.76 0.77 0.78 
%a 

Elgam 7. n e  &if1 in the plasmon cut-off frequency due Io the 018418 isotope mea 
for the fourlb mode (t” the lop) m figure 6. Here, q= = 0 and the chain curve has 
the same meaning as in Bgure 6. 

results with figure 2, we find that the suppression of the chain modes, when q,a is 
small, is significantly reduced due to the opening up of another plasmon-coupling 
channel. The phonon-like modes are well localized on the planes, and the middle 
branch of the plasmon-like modes is still the most extended one. The chain mode is 
still completely damped, as in figure 2. 

In figures 7 and 8, we have displayed the plasmon cut-off frequency shifts due 
to the O,,-O,, isotope effect. Figure 7 shows the shift of the fourth mode (from 
the top), whereas figure 8 shows the shift in the highest mode. The shift of the 
highest mode is probably smaller as a result of the localized nature of this mode. 
The largest indirect shift of the plasmon cut-off frequency is an order of magnitude 
smaller than the direct shift of the optical phonon bequency. The shift of the chain 
mode is believed to be larger since the shift of the optical phonon mode for the chain 
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F’l&nm IL The shiR in Ihe plasmon cut-off frequency due to lhe 01.4L8 &topc &ea 
for the highest mode in figure 6 Here, q= = 0 and Ihe chain cum has the same 
meaning BJ in 6gurc 6. me localized character of this mode d u m  the shift. 

is larger than it is for the plane and the plasmon-phonon coupling of the chains is 
stronger than for planes since the plasmon and phonon energies are closer. However, 
the localized character of the chain mode for small qya will significantly limit any 
increases of the shift in plasmon frequency. 

rylre .I. Illmedimensional plat of the effective inlralaycr Coulomb interaclbn ratio 
of (32) in our model to (38) which is a simplified result for a h y d  m m  model M 
funclions of w and q.,. Here, we Iake q,a = 0.5 and qid = 1.0. 

In figure 9, we plot the ratio of (32) to (38) as functions of w and q,,. This 
function can be taken as a renormalization factor in the gap equation for a layered 
ZD EG model. The local peaks and valleys in this figure represent the contributions due 
to plasmons from (32) and (38), respectively. The separation between the positions 
for the peaks and valleys mmes from the combined effects of crystallinity, exchange 
and correlation, and plasmon-phonon coupling. From (32), we know that the peak 
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value is proportional to E,/&'. Since lvl* is usually very small in our model and the 
optical phonon frequencies for both the chain and plane are almost equal, this gives 
rise to one plasmon-like and two phonon-like modes whose energies are nearly equal 
to the energies of the single chain plane plasmon-like or phonon-like modes, which 
corresponds to the solutions of e, = 0. The remaining plasmon-like modes with 
energies close to the energy of a single-plane plasmon mode correspond to solutions 
of cp = 0 in the absence of phonon coupling. Therefore, only one dominant peak 
in figure 9 is conspicuously seen. If the coupling term 1V12 is sufficiently strong, we 
believe we. would see the other three smaller peaks. A simiiar situation can be seen 
in figure 10, where we have plotted the ratio of (32) to (38) as functions of w and 
qz. Here, we also get one valley and one dominant peak. By tracing the peak, we 
obtain the q,dependence of the plasmon excitation energy. In both figures 9 and 
10, we have found that the ratio has a value larger than one in most regions of the 
figures. 'Ibis implies that the chains increase the magnitude of the effective intralayer 
Coulomb interaction. Equation (33) implies that the corrections due to exchange and 
correlation reduce the short-ranged part of the Coulomb interaction, and this usually 
leads to a reduction of the plasmon excitation energy. 

.*".' .". ...LIV.LY*..aY..L.. y.U. ". ...* LY*.....C ".Y'.',C, u.y,yI"y Y,,C.PL..,",, .n,," 

of (32) in our model to (38) which k a simplified m u l l  for a layered w EG model as 
functions of Y and qr. Here, we lake .q,o = qya = 1.0. 

Our calculations also show that increasing the number of planes within a unit cell 
will greatly increase the plasmon energy as well as the weight of acoustical plasmons 
in the density of states due to the very strong interlayer coupling within a unit cell. 
We emphasize that the role of chain planes is to increase the coupling between the 
unit cells. 

4. Discussion 

In this section, we expand the previous discussion to establish a connection between 
our results and the experimental data for high-Tc superconductors. From a linearized 
version of the Eliashberg equation in conjunction with some simplifying approxima- 
tions [6,15,16] we obtain the transition temperature for s-wave pairing when wc << $) 
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as 

k,T, = 1.134Tw,exp {- (S) } 
where p* is the modified Coulomb repulsive potential, defined by 

Ir p' = 
I + p In ($'/tw,) * 

Here, the Fermi energy c$) is given by (16), w, is a plasmon cut-off frequency and 
p is an averaged Screened Coulomb repulsion, defined by 

where d is the length of the unit cell. ICF and U,, are defined in (8) and (32), 
respectively, and 

is the ZD single-particle density of states at the Fermi energy. X in (40) is an attractive 
potential defined by 

W. a 2 ( w ) F ( w )  
X = 2 1  dw w 

where 

and 

is the plasmon density of states. wp = w,,(q) in (46) is determined as a root of 
e(q ;w)  = 0 where e is defined in (35). The anisotropy in the density of states is 
again quite clear from (46). This is due to the WO-dimensionality and the inclusion 
of chain planes into our model. Furthermore, when q,a = h, lL3qz/awpl in the 
density of states becomes singular and makes the dominant contribution to the weight 
of acoustical plasmons. 

Clearly, from (a), T, increases with wc or A. The chain planes in our model 
increase the coupling within a unit ceU as well as the effective intralayer Coulomb 
interaction. As a result, wc and X are enhanced in magnitude which in turn causes 
the superconducting transition temperature to increase. 
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Assuming a plasmon-mediated pairing mechanism, we can calculate the isotope 
ef ic t  through the index p defined in terms of the following logarithmic derivative 

that im DM the mass MO of the oxygen atom. In our numerical calculations, wc - 
(0.4 - 3.5) eV, but e?) = 4.2 e\! This implies that the condition w, g e?) for 
equatic IS (40) and (41) is well satisfied. The isotope effect also influences the values 
of X ar I ** as a result of changes in U,, and F(w) .  In our numerical calculations, we 
have fc md that these changes are small. Therefore, we have neglected the resulting 
small I odifcations in X and p in (47). Referring to figure 7, we deduce the cut-off 
frequa cies for O,, and O18. These yield p = 0.58 x lo-* which is two orders of 
magnit de smaller than the standard BCS value of 0.5. It was argued in [15] that the 
pair-br a!&g effect would lower p by one order of magnitude. The smaller value of 
p that ve obtain is due to the fact that no direct phonon-mediated pairing process is 
involve I. 

In onclusion, we emphasize that the local minimum in the excitation energy 
spectn n s due to the crystalline structure within the layers of the superlattice. We 
have SI iwn that the plasmon-optical phonon coupling produces a shift in the plasmon 
c u t 4  iequency. We have also demonstrated that incorporating the chain planes into 
our mc le1 increases the coupling between unit cells as well as the intralayer Coulomb 
interac ion which in mm produces a higher T,. 

k k n m  Iedgments 

We wf ild like to thank Dr M Mohamed for helpful discussions. This work was 
SUPPOI ed in part by a grant from the Natural Sciences and Engineering Research 
Cmnc of Canada (DH and GG). 

Refere ces 

(I] 4 le- P W 1987 Wmce 215 1196 
.4 lemon P W, hskaran G, Zou Z and Hsu T 1987 Phys. Rea Lrtr 58 2790 
lG alson S A, R O W  D S and Sethna J P 1987 Phy3. Ret! B 35 8865 

[Z] Lz ghlin R B 1988 Phys h. Len 60 2677 
13) SC rieffer J R, W e n  X G and iThang S C 1988 Fhys Ret! L w  60 944 
141 ffi deen J, Cooper L N and Schrieffer J R 1957 Phys Rev. 108 1175 
151 M rris D E, Kumda R M, Markelz A G, Nickel J H and %i J Y T 1988 Phys, b. B 37 5936 
[6] RI alds J 1987 Phys Rm B 35 8869 
[q 10 sin V Z and Morawilz H 1988 Phys. Ret! B 37 7854 
[8] 0 ffin A 1988 Phys. Ret! 37 5943 
p] 0 ffin A and Pindor A J 1989 Phys. h. B 39 11503 
110) 111 y S E M n g  S Y and Yang T J W 1990 F%ys Mc A 151 439 
[ll] H ang D and Antoniewcz P R 1991 Phys. Rev. B 43 2169 

Fi ang D and Zhou X 1990 ,! Php:  Condm Matter 2 501 
[E] 'Iy gman S A 1990 Phys Rex Len 65 5M) 
[13] FI nk J P, Jung J, Salomons G, Miner W 4 Mohamed M A -K, r3"wski  J, Gygax S, Irwin J 

1141 Pe kowitz S, Cam G I, Lou B, Yom S S, Sudhamnn R and Ginley D S 1987 Solid Stare ~ ~ I M I ~ L  
2 Milfhell D E and Spmule G I 1990 Physca C 172 90 

a n 1  



3550 D Huang et al 

Krenn H, Bauer G, Vogl G ,  StrSszer G and Gomik E 1989 PhUJ. &. B 39 6116 
&per J R, Chu C T  Zhou L\n! Dunn Band Oruner G 1988phYs Ret! B37638 
“ c l  L Wiltlin 4 Kuhl J, Mattauscb H, Bauhoier W and Simon A 1987 S O U  SuIe C m m  

1151 Carbmc J P, Grcr~on M and Gonzala A P 1991 Phys Rn? Lm 66 1789 
116) Gumte G 1983 J Low T a p  phys. 54 85 

63 843 


